Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available September 19, 2026
-
Free, publicly-accessible full text available September 19, 2026
-
The Po River Basin (PRB) is Italy’s largest river system and provides a vital water supply source for varying demands, including agriculture, energy (hydropower), and water supply. The current (2022) drought has been associated with low winter–early spring (2021–2022) snow accumulation in higher elevations (European Alps) and a lack of late spring–early summer (2022) precipitation, resulting in deficit PRB streamflow. Many local scientists are now estimating a 50- to 100-year (return period) drought for 2022. Given the importance of this river system, information about past (paleo) drought and pluvial periods would provide important information to water managers and planners. Annual streamflow data were obtained for thirteen gauges that were spatially located across the PRB. The Old World Drought Atlas (OWDA) provides annual June–July–August (JJA) self-calibrating Palmer Drought Severity Index (scPDSI) data for 5414 grid points across Europe from 0 to 2012 AD. In lieu of tree-ring chronologies, this dataset was used as a proxy to reconstruct PRB regional streamflow. Singular value decomposition (SVD) was applied to PRB streamflow gauges and gridded scPDSI data for two periods of record, referred to as the short period of record (SPOR), 1980 to 2012 (33 years), and the long period of record (LPOR), 1967 to 2012 (46 years). SVD serves as both a data reduction technique, identifying significant scPDSI grid points within the selected 450 km search radius, and develops a single vector that represents the regional PRB streamflow variability. Due to the high intercorrelations of PRB streamflow gauges, the SVD-generated PRB regional streamflow vector was used as the dependent variable in regression models for both the SPOR and LPOR, while the significant scPDSI grid points (cells) identified by SVD were used as the independent variables. This resulted in two highly skillful regional reconstructions of PRB streamflow from 0 to 2012. Multiple drought and pluvial periods were identified in the paleo record that exceed those observed in the recent historical record, and several of these droughts aligned with paleo streamflow reconstructions of neighboring European watersheds. Future research will utilize the PRB reconstructions to quantify the current (2022) drought, providing a first-time paleo-perspective of drought frequency in the watershed.more » « less
-
The Apalachicola–Chattahoochee–Flint (ACF) basin is arguably the most litigated interstate river system in the eastern United States. Given the complicated demands for water use within this basin, it has been difficult to ascertain if the recent multi-decadal decline in streamflow is a product of human disturbance, changing climate, natural variability, or some combination of the above factors. To overcome these challenges, we examined unimpaired streamflow and precipitation within and adjacent to the ACF basin, upstream of the Apalachicola River at Chattahoochee, and the Florida streamflow station (ARCF), which has historically been identified to be representative of hydrologic variability in the ACF basin. Several of the upstream, unimpaired, streamflow stations selected were identified in rural watersheds where land-cover changes and human disturbance were minimal during the study period. When applying a series of statistical evaluations, ARCF streamflow variability generally reflects the natural variability of the ACF basin. Additionally, unimpaired streamflow variability from the neighboring Choctawhatchee River compared favorably with ARCF variability. The recent multi-decadal decline was consistent in all records, with the 2000s being the most severe in the historic record.more » « less
-
Abstract We describe the utility of false rings inTaxodium distichum(i.e. baldcypress) as a proxy for hydroclimatic extreme events in three different river basins (Pascagoula, Mobile, and Choctawhatchee) that discharge into the northern Gulf of Mexico. False rings occur as a result of a change in the environmental limiting resource for tree stem growth, and inT. distichum, false ring production is usually a result of increases in mid-growing season water availability. Our results show that false ring occurrence (from 1931 to 2018) is similar across sites but occur in different years, suggesting that false ring production is indicative of tree response to its local environment. False ring production inT. distichumhas previously been correlated with summer streamflow, the season when tropical cyclone precipitation (TCP) is highest. To assess a stand-wide response, we define high false ring (HFR) years as all years when 20% of trees produced a false ring. We show total TCP in July is the best predictor for HFR years inT. distichum, and false ring production in smaller river basins captures local TCP better than larger river basins. Additionally, HFR years coincide with summers of anomalously high precipitation, anomalously low temperatures, and a positive phase of the North Atlantic Oscillation. 77% of HFR years occur in seasons when there is heavy tropical cyclone activity near sample sites, building a foundation to use false ring records as robust TCP proxies with hydroclimate reconstruction potential.more » « less
-
null (Ed.)Seasonal reconstructions of streamflow are valuable because they provide water planners, policy makers, and stakeholders with information on the range and variability of water resources before the observational period. In this study, we used streamflow data from five gages near the Alabama-Florida border and centuries-long tree-ring chronologies to create and analyze seasonal flow reconstructions. Prescreening methods included correlation and temporal stability analysis of predictors to ensure practical and reliable reconstructions. Seasonal correlation analysis revealed that several regional tree-ring chronologies were significantly correlated (p ≤ 0.05) with March–October streamflow, and stepwise linear regression was used to create the reconstructions. Reconstructions spanned 1203–1985, 1652–1983, 1725–1993, 1867–2011, and 1238–1985 for the Choctawhatchee, Conecuh, Escambia, Perdido, and Pascagoula Rivers, respectively, all of which were statistically skillful (R2 ≥ 0.50). The reconstructions were statistically validated using the following parameters: R2 predicted validation, the sign test, the variance inflation factor (VIF), and the Durbin–Watson (D–W) statistic. The long-term streamflow variability was analyzed for the Choctawhatchee, Conecuh, Escambia, and Perdido Rivers, and the recent (2000s) drought was identified as being the most severe in the instrumental record. The 2000s drought was also identified as being one of the most severe droughts throughout the entire reconstructed paleo-record developed for all five rivers. This information is vital for the consideration of present and future conditions within the system.more » « less
-
Abstract Over recent decades, the southeastern United States (Southeast) has become increasingly well represented by the terrestrial climate proxy record. However, while the paleo proxy records capture the region's hydroclimatic history over the last several centuries, the understanding of near surface air temperature variability is confined to the comparatively shorter observational period (1895‐present). Here, we detail the application of blue intensity (BI) methods on a network of tree‐ring collections and examine their utility for producing robust paleotemperature estimates. Results indicate that maximum latewood BI (LWBI) chronologies exhibit positive and temporally stable correlations (r = 0.28–0.54,p < 0.01) with summer maximum temperatures. As such, we use a network of LWBI chronologies to reconstruct August‐September average maximum temperatures for the Southeast spanning the period 1760–2010 CE. Our work demonstrates the utility of applying novel dendrochronological techniques to improve the understanding of the multi‐centennial temperature history of the Southeast.more » « less
-
Despite growing in wet lowland and riparian settings, Taxodium distichum (L.) Rich. (bald cypress) has a strong response to hydroclimate variability, and tree ring chronologies derived from bald cypress have been used extensively to reconstruct drought, precipitation and streamflow. Previous studies have also demonstrated that false rings in bald cypress appear to be the result of variations in water availability during the growing season. In this study 28 trees from two sites located adjacent to the Choctawhatchee River in Northwestern Florida, USA were used to develop a false ring record extending from 1881 to 2014. Twenty false ring events were recorded during the available instrumental era (1931–2014). This record was compared with daily and monthly streamflow data from a nearby gage. All 20 of the false-ring events recorded during the instrumental period occurred during years in which greatly increased streamflow occurred late in the growing season. Many of these wet events appear to be the result of rainfall resulting from landfalling tropical cyclones. We also found that the intra-annual position of false rings within growth rings reflects streamflow variability and combining the false-ring record with tree ring width chronologies improves the estimation of overall summer streamflow by 14%. Future work using these and other quantitative approaches for the identification and measurement of false ring variables in tree rings may improve tree-ring reconstructions of streamflow and potentially the record of tropical cyclone rainfall events.more » « less
An official website of the United States government
